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* - MODERN DESIGN OF SIMULATION EXPERIMENTS*

I by
Edward J. Dudewicz

Department of StatisticsI The Ohio State University
SColumbus, Ohio 43210

I

INTRODUCTION

A "simulation" is an, experiment run inside the compu-

ter (istead of in what is generally, in the field, termed

the "real world") in order to obtain information about a

system (existing or proposed), modifications to a system,

or several competing systems. Since it is well-known that

6much more information can be extracted from experimentsA

which are carefully designed statistically than can be

from experiments which are not statistically designed,

statistics has a large role to play in simulation. This

chapter deals with that role. This is an especially

important chapter for those not used to thinking of their

simulations in statistical terms (e.g., those who "run

* until the money runs out" or who believe that "one run

= will show me how the system behaves"), as it will enable

This research was supported by Office of Naval Research
Contract No. Nomo4-7B-C-0543.
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them to obtain valid results where invalid ones were '
3 previously obtained, to obtain those results at lower cost

than for valid results obtained without a carefully

designed experiment , and to obtain valid results for

SIP systems where (without using statistical design) the study

is computationally infeasible.

As we have said, since simulation data are essenti-

ally obtained from an experiment run "inside the computer,"

we need to know how to design the experiment whereby these

data are generated, and we need to know how to analyze the

resulting data. Now this comprises a large part of the

"* field commonly termed statistics, to which whole university

departmer.ts are devoted. Hence, only the most important

aspects of design and analysis will be covered here, with

a cavaet that, if a simulation study is to be properly

designed and executed, in many cases it will be desirable

to have associated with the study from the outset a

statistician competent in simulation applications.

It is a fact that statistics grew up in a largely

agricultural setting where such assumptions as homoscedas-

ticity (equality of variances of observations taken from

* diverse sources, such as weights of tomotoes from differ-

ent types of tomato plants) commonly held true, while in

simulation these are often violated (e.g., serious hetero-

scadasticity -- greatly unequal variances -- is more often
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the rule in simulation studies, as when a number of

." diverse alternative job-shop scheduling rules are being

simulated). The theory required to handle these new

situations has only recently been developed (e.g., for

heteroscedasticity [I] and for autocorrelated observations

[2]). Thus, many parts of the topics covered here wi1l,

for some time to come, be unavailable in almost any texts

or books and manuals on statistical methods.

1. Design

!.a. Factorial, fractional-factorial, and one-at-a-

time experiments: why and why/not, efficiency.

The pitfalls of lack of statistical design in a

simulation experiment include: invalid inferences; valid

inferences at substantially increased costs; and inabili-

ty to complete the study.

For example, suppose a simulation model has been

built of output Y(xl, x2 ) of a system which depends on two

input variables xI (tenperature in 0F.) and x2 (reaction

time in minutes) [each reader will know similar examples

in his/her own field, and may find it helpful to re-cast

this example in the terms applicable to one such example].

Suppose that it is standard to operate at xI  300,

x= 10, and the simulation is to evaluate possible gains
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of increasing x1 (by 250 F.) or x2 (by 2 minutes).

Commonly one would run the model. at (x1 , x 2 ) equal to

(300, 10), [325, 10), (300, 12) to evaluate the effect

of the proposed changes (one-at-a-time method). Suppose

one does so, and the results (each based on one run) are

as in Table I. Let us suppose that no variability is

Table 1. Results of one-at--a-time experiment.

(x I , x 2 )  Y(x1, x2 ) from simulation run

(300,10) 100.0

(325, 10) 102.5

(300, 12) 101.0

present (so, untypically, results of one simulation run

are typical), that past experience with the system has

typically yielded 100.0 output units at (xi, x2 ) = (300,

10), that expensive plant changes are required to imple-

ment changes of this magnitude (so we must simulate before

making changes in the plant), and that to be economically

feasible we must obtain at least a 5% process yield in-

crease from any recommended changes. We estimate the

gain from incrementing x, to be

102.5 - 100.0 = 2.5

and the gain from incrementing x, to be

101.0 - 100.0 1.0

IF
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for atotal estimated gain of 2.5 + 1.0 3.5 units, less

than 5%, so the proposed improvement in process is dis-

carded.

Now the above assumes an output linear in each of x

and x 2 (perhaps reasonable in a small range about the

usual process operating conditions), but with no synergis-

tic effects (no interaction).., which is often false in

the real-world (at least, we should not believe such an

assertion without validation, and the design above allows

no such verification). For example, an experiment run at

(325, 12) might complete our data set to that of Table 2.

This set of data has a far different interpretation than
2

Table 2. Results of 2 experiment.

*; (x1 , x2 ) Y(x, x2) from simulation run

(300, 10) 100.0

(325, 10) 102.5

(300, 12) 101.0

(325, 12) 110.0

does that of Table 1; we now see it will be very profi-

table (double the needed 5% gain in output) to make the

plant modifications needed to run at the higher temperature

(x1 = 3251F) and longer time (x2 = 12 min.), thus avoiding

an invalid inference. The results of Table 2 would be
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better displayed as in Table 3, which shows the 22 (two
- a

factors, each at two levels) design more clearly. Such

results as these can be obtained from as simple an under-

Table -. Results of 22 experiment.

x) from simulation run

x 2 x= 10 x= 22
1 2  O 2

X 1 = 300 100.0 101.0

x I 325 102.5 110.0

lying true function as

Y(Xl7x.) = 100.0+0.1(x,-300.0)+0.5(x 2-10.0)

+0.2(x 1 -300.0)(x,-10.0).

As tbhe number n of variables increases, the (invalid)

one-at-a-time method will require a number of simulation

runs equal to the number of variables; e.g. if in

addition to x1 (temperature) and x2 (reaction time) we

also have variables x 3 (arid concentration) and x (pH)

present, then n = 4 simulation runs would be needed by

this (invalid) method. In order to assess effects with

each variable at the traditional or a higher level, the

analog of the experiment in Table 2 would require 2
g 4 16

simulation runs. As these runs can be very expensive

(e.g., in nuclear simulations, where a run can consume

several hours of computer time), we now wish to

£
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investigate more sophisticated designs which yield

comparably correct inferences at substantially reduced

cost.

To perform this task, we must first consider models

for yield Y as a function of variables x1, x 2 , x3  x 4 . . . . .

It is reasonable to assume that true mean yield E(Y) may

be accurately represented by a polynomial equation of

sufficiently high order:

EY~x1 , x2 , x 3, x 4 , .. )

-0 + + 81 x1 + 8 2x 2 + a3x3 + 34 x 4

+ 2 xix2 + 81 3 xlx3 + B1 4xlx4 +B2 3 x 2 + V \ L *B4 'x
22

+ a12 3 XX2 X3 + 8 1 2 4 Xlx2x 4 + 81 3 4xlX 3x4 + 5234x2x3'4

+ B1 2 3 4xIx 2x 3x 4 + ...

Different choices of the points (x1 , x 2 , x 3, x4, ... ) at

which simulation runs should be made (each such choice is

called an experimental design) allow us to estimate var-

ious of the a's (singly or in combination), while assuming

others are negligible (which can often be tested).

Typically one assumes terms of higher than second order

are negligible (0 = 8123 8124 : a134 = 1234 7 a1234

... The coefficients 61) 82' 83, 84 are called main

effects of variables x1 , x2 , x3, x4 ' while 812' a13, 0141

71 -23' 824, 834 are called 2-factor interactions (2 fLi.)

$/
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of the variables involved in the subscripts. An experi-

mental design is called a Resolution III design if no

main effect is confounded with (not able to be estimated

serdts] V raim) any tt ha main e fect, but main

effects are confounded with 2 f.i. and 2 f.i. with each

other. In a Resolution IV design no main effect is con-

founded with any other main effect o- 2 f.i, , but 2 f.i.'s

are confounded with each other. Thus, Resolution III will

allow us to fit a model B0 + Y K in factors x)i but

interaction will bias the fit. A resolution IV design

will allow a fit unbiased by 2 f.i., i.e. Bi will estimate

Ki (not i +- some of the 8i 's of xixi interactions).

The one-at-a-time method yields a resolution IV design,

and its disadvantages have been noted above.

l.b. Screening experiments.

In screening experiments one attempts to use designs

which allow one to find out (at relatively modest cost,

i.e. no. of simulation runs) which of the variables xl.

x 2 , x3 , x 1 ... are most influential as to one's system's

output in very few expcriments by using a Resolution III

design (of course one then gives up almost all model

fitting ability, the intention being to run a more exten-

sive experiment later on the few highly influential

tT
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variables identified). For example, one design commonly

-' used is the Resolution III Plackett-Burman design which

can study 7 variables x., x2 , X 3 , x 4 ,5x x5, N 6, X 7 in 8

simulation runs, shown in Table . In this design,

Table 4. Resolution III Plackett-Burman design.

Variable

X x2 X 3 X 4 x5 x6 X7

1 + + + - + - -

2 - + + + - + -

Experiment 3 - - + + + - +

4 - - + + + -

5 - + - - + + +

6 + - + - - + +

7 + + - + - - +

each experimental variable has 2 levels, low(-) and high(+)

(e.g., 300(-) and 325(+) for xI). In experiment 1, varia-

bies i, 2, 3, 5 are set to their high levels, while varia-

bles 4, £, 7 are set to their low levels. If desired

later, this design can be augmented to a Resolution IV

design by adding 8 more runs (for a total of 16 runs). One

can also study 6 factors in a 12 e::perimenr (Webb) experi-

mental design, at Resolution IV. As another example of a

screening design, if we have S independent variables then

a Webb design of Resolution IV is available (see Table 5)

S
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which involves 10 experiments.

Table S. S-variable screening design.

Variable

xI  x2 x3 x4 xS

1 . .- . .

2 - + - - -

3 - - + - -

4 - + _

Experiment S . . . . +

6 -- + + + +

7 + - + + +

, + + - + +

9 + + + - +

10 + + + + -

* Note that the first 5 experiments form a Resolution III

design, but the 10-run experiment is much more efficient

i than the S-run experiment (it yields estimates with

variance G2/9 for main effects, vs. o2 for the S-run one-

at-a-time experiment.., a 9-fold reduction at a price of

,5 more runs, and with 2 f.i. elimination; here oz is the

*variability inherent in each simulation run's outcome).

As a final example of a screening design, with 4 variables

* x1 , x2, x3, x4 a Webb Resolution IV design with 8
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experiments is available (Table 6) (which is a

"fractional factorial" design, i.e. a fraction of the

16 experiment factorial design with confounding

scheme I = ABCD) which allows one to fit 80 1i3 B2 ' B31

84 unbiased by two-factor interactions (though those inter-

actions themselves are not estimable).

Table 6. 5-variable screening design.

Variable

x I  x x 3  x
X__ _ _ _ 1 X2 X3 4L

2 + - - +

3 - + - +

4 + + - -

Experiment 5 - - + +

6 + - + -

7 - + + -

8 + + + +

l.c. Central composite designs and full quadratic

models.

Assuming screening has been completed we will wish

to use a design which allows for assessment of all main

effects, all 2 f.i., and (perhaps) all quadratic effects.

' ri- - -- -
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We will illustrate with a 4 variable example.

- Here one wisbes not simply to find the most important

factors, but rather to model system output as a function

of design settings. Of course the appropriate design to

use depends on one's goals and scope of study, as well as

on one's budget. One possibility is an 11 experiment Webb

design (Table 7). This design allows one to fit a) 131s
02' 3' g4' S12' 813' 81L' 823' B240 $ assuming no

curvature.

Table 7 . 4-variable Webb design.*

Variable

xl x 2  x3  X4

1 0 0 0 0

2 0 0 1 1

3 0 1 0 1

4 0 1 1 0

S 1 0 0 1

Experiment 6 1 0 1 0

7 1 1 0 0

8 0 1 1 1

9 1 0 1 1

10 1 1 0 1

1i 1 1 1 0

I"0" denotes low " denotes high (+)

vi
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Since curvature cannot often be ruled out a priori,

one will usually desire another design (which, however,

will require more experiments) unless one's budget is

severely constrained. The full factorial 24 design (16

experiments) allows one to estimate B 0 + 811 + 822 + 833 +

B44' Bl 82 835 84 812, 85131 614' 8231 8241 8341 3123" 81247

81341 8234 and (assuming 61234 negligible) have an estimate

of experimental error a2. [No suitable "fractions" of this

design exist, as they all confound one- and/or two-factor

effects, so no such easy reduction of number of experiments

needed is possible in the 4-factor case. ] By adding one

experiment, one obtains the 2 4+1 design (17 points), with

which one can now separately estimate %0' 811 + 822 +833 +

* 844. hence (barring cancelling magnitudes) assess the total

quadratic effect independently of the response at the

center (80).

While the above designs are in common use, more

recently the Central Composite Design (CCD) ha: heen used

' to good advantage in such situations. This requires B star

(or, axial) points be added to the 24+1 design, for a total

of 25 experiments, and allows a full quadratic model to be

fitted. Suitable fractions of the 24 may be used (i.e. a

fraction with at most one 2-factor interaction in any alias

set), and (via confounding scheme I = ABC) one can obtain

the full quadratic model estimation with

-. *<•
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2 4 + 1 + 8 = 17 points.

As an example, suppose we have six variables to consider

say x1 , x2, x3, x4, x5, x6. A full-factorial approach

would require 26 = 64 experiments, which in many cases

would not be feasible. However, a CCD can be implemented

with only 262 + (2)(6) + 1 = 29 experiments as shown in

Table 8. There the levels are "coded" so that "1" means

p -



Table 8. CCD studying 6 variables, in 29 experiments.

Variable

Name Expt. No. x I  x 2  x 3  x4 x 5  x 6

1 1 -1 -1 1 -1 -1 l
2 -i 1 -l 1 -1 -1
"3 -l -i 1 1 -]. -l

S1 1 1 1 -i -1
5 1 -i -i -1 1 -].
7 -1 - 1 -1 1 -126 6 -I -1 -1 1 -l

Points 8 1 1 1 -1 1 -1
9 1 -l -i -1 -l 1

10 -1 1 -1 -l -l 1
11 -I -l 1 -i -i 1

12 1 1 1 -1 -1 1
13 1 -1 -1 1 1 1
14 -1 -1 1 1 i
15 -I -1 1 1 1 1
16 1 l 1 1 1 1

17 -0( 0 0 0 0 0
18 a 0 0 0 0 0
19 0 -ct 0 0 0 0
20 0 at 0 0 0 0
21 0 0 -ci 0 0 0

Star 22 0 0 -(t 0 0 0
23 0 a 0 -1 0 0
24 0 0 0 Q 0 0

-25 0 0 0 0 -a 0

26 0 0 0 0 a 0
27 0 0 0 0 0 -a
28 0 0 0 0 0 a

Center 29 0 0 0 0 0 0

the "high" level of the variable, "-i" means the "low"

level of the variable, and "0" means the average of the

high and low levels. "-Q" and "a" represent multiples of

the "low" and "high" levels; e.g., if one takes o t 1

(face-centered star points) these are equal to the

1I -
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respective "low" and "high" levels of the variable in

question. Some typical possibilities are given in Table
t9.

Table 9, Coding of variable x I levels, CCD.

Level

-X 1 0 1

-- 1 300 300 312.5 325 325

2 287.5 300 312.5 325 337.5

If one has bounds Li and Ui on variable xi and wishes to

explore the full space, a = I is often recommended. In

other settings I < a < 2 is often used. The specifics

vary irum setting to setting, with a = 1.5 being a

reasonable ckmpromise for experimenters who do not have

access to a statistical design expert.

l.d. Efficient implementation.

It is important to note that the ordering of experi-

ments in the above tables is not the recommended order in

which the simulation runs should be made. Since often the

"next" run starts with the end of the "last" run's random

number stream, runs should be in random order to prevent

systematic effects (from possible deviations from random-

ness of one's random

P
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number generator) from systematically biasing the

results. A carefully tested and chosen random number

generator is essential, and an existing generator should

not 1-o lzoed without extensive vaLidation (available in

[3]).

Note that (unless one has prior knowledge of how his

system will use random numbers and correlation, which is

rare) use of variance reduction techniques (see Chapter D)

will not often be appropriate.

i.e. Two-stage and sequential designs.

The designs explored so far are reasonable ones to

use in homoscedastic systems. In heteroscedastic systems

(where o2 is a function of the levels of x], x2, ... ),

other designs are called for. Most commonly one finds

that if X1 , x 2 , ... represent levels of a continuous

variable (such as temperature), then the designs given

thus far are appropriate even if u2 varies slightly as

x 1 , x2 , ... are changed.

However if xi, x2 ... represent the presence (l) or

absence (0) of an attribute, then new designs for select-

ing the best combination of attributes re: system

performance are called for. See (4] for some details.

r4

I.

!-
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2. Analysis.

- -4

The designs presented in section 1 are appropriate

for situations where one wants to know "which of k factors

are most important in determining my system's output?" or

"What model for system output, in k input factors, should

be subjected to optimization (Chapter F)?" Design and

analysis of the simulation experiment when one's goal is

not to answer the above questions, but rather others, such

as: a. What is the long-run mean of my system? (which

may be answered using a transformation-based analysis,

and involves questions of normality and run-in time, and

leads us to two-stage and regenerative approaches);

b. Which system parameters have significant effects?

I (which leads us into analysis of variance (ANOVA), and

whe.re transformations should generally not be used);

* c. How different are the various systems' performances?

(which requires simultaneous interval estimates); and

-. d. Which is the best system (or set of system parameters)?

(which requires the new methodology of ranking-and-

selection procedures), is a subject now undergoing rapid

development. While such problems have traditionally been

approached in the past with transformations, one-stage

- procedures, or ANOVA, the pitfalls of some of these

1 ]traditions and of equal-sample-sizes, and the new methods

-1- 7 . . i- i7 .. i-|...i . ... r -- I - : i
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recently developed which should be used in the future,

are explored in [iJ.

Towards the future, ongoing developments in multi-

variate analogs of the design and analysis procedures

presented should lead to future procedures which are able

to simultaneously consider several output characteristics.

-V
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